Cut loci of closed surfaces without conjugate points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangent Cut Loci on Surfaces

Given a smooth compact Riemannian surface, we prove that if a suitable convexity assumption on the tangent focal cut loci is satisfied, then all injectivity domains are semiconvex.

متن کامل

Exponential Growth of Spaces without Conjugate Points

An n-dimensional polyhedral space is a length space M (with intrinsic metric) triangulated into n-simplexes with smooth Riemannian metrics. In the definitions below, we assume that the triangulation is fixed. The boundary of M is the union of the (n− 1)-simplexes of the triangulation that are adjacent to only one (n− 1)-simplex. As usual, a geodesic in M is a naturally parametrized locally shor...

متن کامل

Cut Loci and Distance Spheres on Alexandrov Surfaces

The purpose of the present paper is to investigate the structure of distance spheres and cut locus C(K) to a compact set K of a complete Alexandrov surface X with curvature bounded below. The structure of distance spheres around K is almost the same as that of the smooth case. However C(K) carries different structure from the smooth case. As is seen in examples of Alexandrov surfaces, it is pro...

متن کامل

Real K 3 Surfaces without Real Points ,

We consider an equivariant analogue of a conjecture of Borcherds. Let (Y,σ) be a real K3 surface without real points. We shall prove that the equivariant determinant of the Laplacian of (Y,σ) with respect to a σ-invariant Ricci-flat Kähler metric is expressed as the norm of the Borcherds Φ-function at the “period point”. Here the period of (Y,σ) is not the one in algebraic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1981

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-44-2-263-276